Ученые проверили, может ли нейросеть эффективно определять пористость и строение почвы по изображениям рентгеновской томографии. Часто невозможно оценить эти параметры без вмешательства человека, так как современные методы обработки изображений с участием оператора часто приводят к ошибкам. Об этом сообщает научное интернет-издание «Индикатор».
Предложенный учеными подход позволяет это сделать всего с 5% ошибок и в будущем поможет оценивать структурное состояние почвы, в том числе для нужд сельского хозяйства. Результаты исследования, поддержанного грантом Президентской программы Российского научного фонда, опубликованы в журнале Soil and Tillage Research.
Для изучения морфологии почвы можно использовать метод рентгеновской компьютерной томографии (РКТ), который позволяет получать наглядные трехмерные изображения внутренней структуры неповреждающим методом. Чтобы определить пути передвижения жидкостей и размеры пор, томографические изображения нужно обработать: разделить их на рентген-контрастные фазы по градациям серого, то есть сегментировать. При сегментации РКТ-изображения на две фазы оно становится бинарным (однобитным), где поры становятся черными, а все что им не соответствует и условно относится к твердой фазе – белым. От того, насколько хорошо сегментировано изображение, зависит характеристика параметров образца.
В своей работе ученые из Института физики Земли имени О. Ю. Шмидта, МГУ имени М. В. Ломоносова и Почвенного института имени В. В. Докучаева предложили алгоритмы для оценивания свойств почвы с большой точностью без участия человека. Для этого они использовали гибридную архитектуру нейронной сети ResNet-101 + U-net. Первая модель нужна для извлечения из исходного изображения важных признаков, а вторая – для сегментации исходного изображения на их основе.
Разработанная система моделирует поры и их твердые стенки, подстраивая параметры моделей под тренировочную выборку из размеченных изображений. С ее помощью ученые успешно обработали семь РКТ-изображений почвы. Погрешность оценивали двумя способами: моделированием потоков жидкостей (флюидов) в порах и на основе классических показателей компьютерного зрения. Для некоторых образцов из набора погрешность составила всего 5%. Такой результат говорит о том, что разработанная нейронная сеть работает точнее, чем все современные автоматические аналоги. Тем не менее у некоторых образцов погрешность была существенно выше 5%. Ученые полагают, что это можно объяснить недостаточностью некоторых структур образцов грунта в наборе обучающих данных, поэтому в будущей работе они планируют использовать более крупные библиотеки РКТ-изображений почвы.